Transform 22
Tutorials

Simple Kriging

%matplotlib widget
import matplotlib.pyplot as plt
plt.ioff()
# turn of warnings
import warnings
warnings.filterwarnings('ignore')

Simple kriging assumes a known mean of the data. For simplicity we assume a mean of 0, which can be achieved by subtracting the mean from the observed values and subsequently adding it to the resulting data.

The resulting equation system for WW is given by:

W=(C(x1,x1)C(x1,xn)C(xn,x1)C(xn,xn))1(C(x1,x0)C(xn,x0))\begin{align}W = \begin{pmatrix}C(x_1,x_1) & \cdots & C(x_1,x_n) \\ \vdots & \ddots & \vdots \\ C(x_n,x_1) & \cdots & C(x_n,x_n) \end{pmatrix}^{-1} \begin{pmatrix}C(x_1,x_0) \\ \vdots \\ C(x_n,x_0) \end{pmatrix}\end{align}

Here, C(xi,xj)C(x_i,x_j) is the directional covariance of the given observations.

Example

Here we use simple kriging in 1D (for plotting reasons) with 5 given observations/conditions. The mean of the field has to be given beforehand.

import numpy as np
import gstools as gs

# condtions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
# spatial random field class
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
krig = gs.krige.Simple(
    model,
    mean=1,
    cond_pos=cond_pos, 
    cond_val=cond_val,
)
field, var = krig(gridx)
ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.legend()
Loading...