The generated fields of gstools are ordinary Gaussian random fields. In application there are several transformations to describe real world problems in an appropriate manner.
GStools provides a submodule gstools.transform
with a range of
common transformations:
binary
discrete
boxcox
zinnharvey
normal_force_moments
normal_to_lognormal
normal_to_uniform
normal_to_arcsin
normal_to_uquad
apply_function
All the transformations take a field class, that holds a generated field, as input and will manipulate this field inplace or store it with a given name.
Simply apply a transformation to a field class:
import gstools as gs
...
srf = gs.SRF(model)
srf(...)
gs.transform.normal_to_lognormal(srf)
Or use the provided wrapper in all Field
classes:
import gstools as gs
...
srf = gs.SRF(model)
srf(...)
srf.transform("lognormal")