The generated fields of gstools are ordinary Gaussian random fields. In application there are several transformations to describe real world problems in an appropriate manner.
GStools provides a submodule gstools.transform with a range of
common transformations:
binarydiscreteboxcoxzinnharveynormal_force_momentsnormal_to_lognormalnormal_to_uniformnormal_to_arcsinnormal_to_uquadapply_function
All the transformations take a field class, that holds a generated field, as input and will manipulate this field inplace or store it with a given name.
Simply apply a transformation to a field class:
import gstools as gs
...
srf = gs.SRF(model)
srf(...)
gs.transform.normal_to_lognormal(srf)Or use the provided wrapper in all Field classes:
import gstools as gs
...
srf = gs.SRF(model)
srf(...)
srf.transform("lognormal")