%matplotlib widget
import matplotlib.pyplot as plt
plt.ioff()
# turn of warnings
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import gstools as gs
Generate a synthetic field with an exponential model.
x = np.random.RandomState(20220425).rand(1000) * 100.0
y = np.random.RandomState(20220426).rand(1000) * 100.0
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=20220425)
field = srf((x, y))
Estimate the variogram of the field with 40 bins and plot the result.
bin_center, gamma = gs.vario_estimate((x, y), field)
Define a set of models to test.
models = {
"Gaussian": gs.Gaussian,
"Exponential": gs.Exponential,
"Matern": gs.Matern,
"Stable": gs.Stable,
"Rational": gs.Rational,
"Circular": gs.Circular,
"Spherical": gs.Spherical,
"SuperSpherical": gs.SuperSpherical,
"JBessel": gs.JBessel,
}
scores = {}
Iterate over all models, fit their variogram and calculate the r2 score.
# plot the estimated variogram
plt.scatter(bin_center, gamma, color="k", label="data")
ax = plt.gca()
# fit all models to the estimated variogram
for name, model in models.items():
fit_model = model(dim=2)
para, pcov, r2 = fit_model.fit_variogram(bin_center, gamma, return_r2=True)
fit_model.plot(x_max=max(bin_center), ax=ax)
scores[name] = r2
Loading...
Create a ranking based on the score and determine the best models
ranking = sorted(scores.items(), key=lambda item: item[1], reverse=True)
print("RANKING by Pseudo-r2 score")
for i, (model, score) in enumerate(ranking, 1):
print(f"{i:>6}. {model:>15}: {score:.5}")
RANKING by Pseudo-r2 score
1. Stable: 0.99567
2. SuperSpherical: 0.99548
3. Matern: 0.9952
4. Exponential: 0.99251
5. Rational: 0.99205
6. Spherical: 0.98856
7. Circular: 0.98365
8. Gaussian: 0.98064
9. JBessel: 0.97989